

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Legende nach DIN 4023: 2006-02

Aufschlüsse

oBS Sondierbohrung KB Aufschlußbohrung ◆RKS Rammkernsondierung

☐ Sch Schurf

DPL/DPM/DPH Sondierung mit der Rammsonde

★FVT 50/75 Flügelscherversuch DIN 4094-4

Rammdiagramm EN ISO 22476-2:2005

Anzahl der Schläge pro 10 cm Sondeneindringung $\,\mathrm{N}_{10}$ 100 110 120 130 140 150 160 20 30 50 60 70 170 180 190 200 Fallhöhe 0,5 m Fallhöhe 0,75 m Fallhöhe 0,5 m Fallhöhe 0,5 m Fallhöhe 0,5 m Tiefe in m Fallgewicht 10 kg Fallgewicht 30 kg Fallgewicht 50 kg Fallgewicht 63,5 kg Fallgewicht 63,5 kg 2.0 Sondenspitze 10 cm Sondenspitze 15 cm Sondenspitze 15 cm Sondenspitze 16 cm Sondenspitze 20 cm 3.0 **DPL DPM DPH** DPSH-A DPSH-B

Grundwasser

√ 4.3 (07.06.93)

Grundwasser

4.3 (07.06.93)

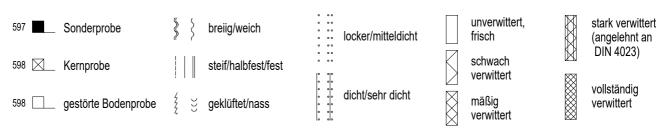
Ruhewasser

7 4.3 (07.06.93)

Sickerwasser

Bohrlochrammsondierung

BDP DIN 4094



Flügelscherversuch FVT DIN EN 1997

FVT 50/75

C_{fv} max. Scherwiderstand / ■ 87 / 42 C_{Rv} Rest-Scherwiderstand [KN/m²]

Proben und Sonderzeichen

Symbolschlüssel Stratigraphie

q = Quartär t = Tertiär

kr = Kreide k = Keuper m = Muschelkalk kro = Oberkreide jo = Oberer Jura (Malm) ko = Oberer Keuper mo = Oberer Muschelkalk kru = Unterkreide jm = Mittlerer Jura (Dogger) km = Mittlerer Keuper mm = Mittlerer Muschelkalk ju = Unterer Jura (Lias) ku = Unterer Keuper mu = Unterer Muschelkalk

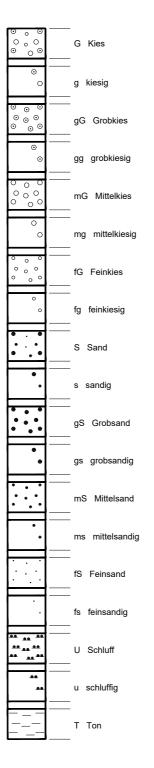
s = Buntsandstein p = Perm c = Karbon o = Ordovizium d = Devon so = Oberer Buntsandstein z = Zechstein cb = Kambrium sm = Mittlerer Buntsandstein r = Rotliegendes si = Silur pr = Präkambrium su = Unterer Buntsandstein

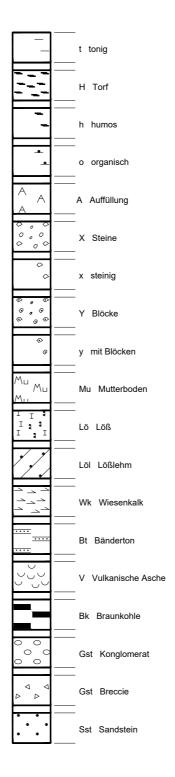
Allgemeine Abkürzungen

F = Fimer DS = Deckschicht KV = Kernverlust G.o.B.= Geruch ohne Befund

TS = Tragschicht WG = Weißglas SE = Schichteinfall V/S = Glasviole / Schottglas

Blattinhalt Allgemeines Legendenblatt Blatt-Nr.:

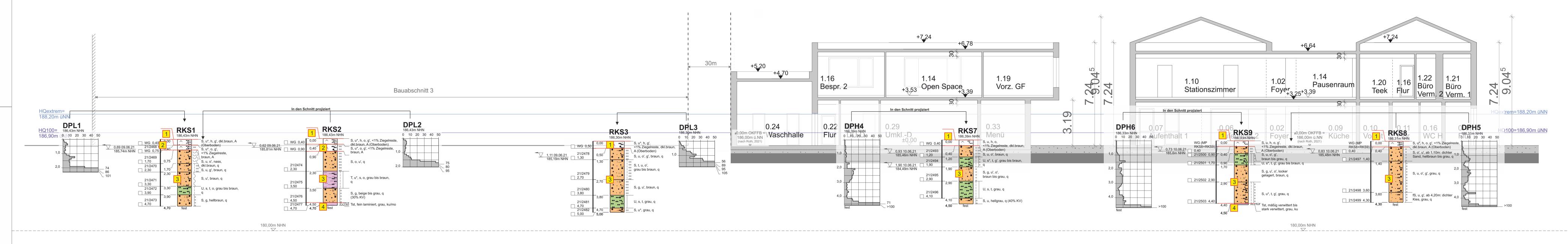

Anlage: 3.0

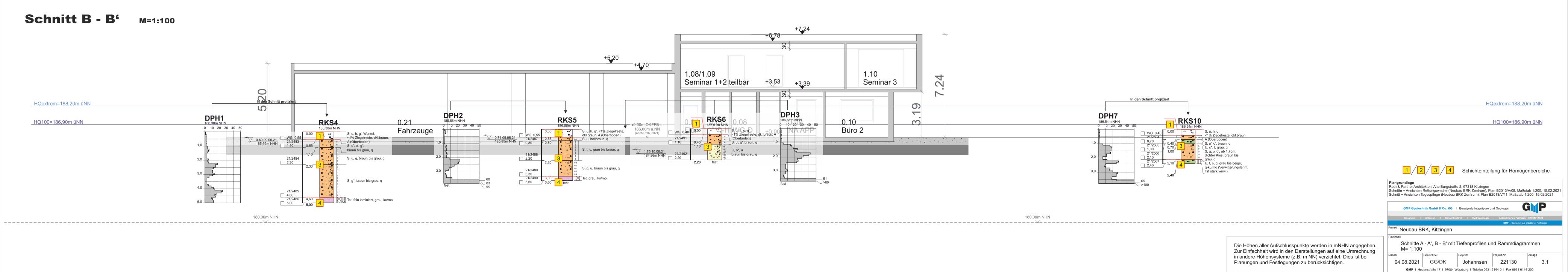


GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Legende nach DIN 4023: 2006-02

Signaturen für Boden- und Felsarten


•• •• •• ••	Ust Schluffstein
	Tst Tonstein
<u> </u>	Mst Mergelstein
	Kst Kalkstein
	Dst Dolomitstein
I I	Krst Kreidestein
	Ktst Kalktuff
A A A A	Ahst Anhydrit
$\overset{A}{\wedge}\overset{A}{\wedge}\overset{A}{\wedge}$	Gyst Gipsstein
	Sast Salzgestein
	Vst verfestigte vulkanische Aschen
2 2 2 2 2 2 2 3	Stk Steinkohle
···· v··· v	Q Quarzit
+ + + + + + + + + + +	Vu Vulkanit (z. B. Basalt)
Y Y Y Y	Pl Plutonit (z. B. Granit, Gabbro)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Mem Massige Metamorphite (z. B. Gneis)
2 2	Meb Blättrige, feinschichtige Metamorphite (z. B. Glimmer- schiefer, Phylitt)


Allgemeines Legendenblatt

Blatt-Nr.:

Anlage: 3.0

Schnitt A - A' M=1:100

Altlasten

Umwelttechnik

Hydrogeologie

Bild 2: Ansatzpunkt RKS2

Projekt: Neubau BRK, Kitzingen	Projekt Nr: 221130
Bilddokumentation Ansatzpunkte der Aufschlüsse	Anlage: 4.1

Altlaster

Umwelttechnik

Hydrogeologie

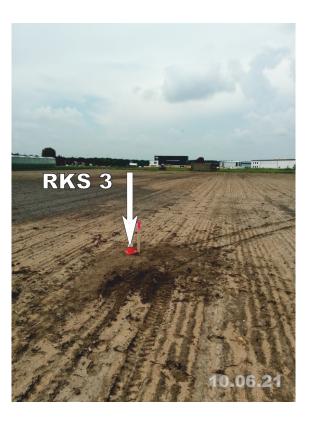


Bild 4: Ansatzpunkt RKS4

Neubau BRK, Kitzingen	Projekt Nr: 221130
Position: Bilddokumentation Ansatzpunkte der Aufschlüsse	Anlage: 4.2
Bilddokamentation / kilodizpankte dei / kilodinadde	7.2

Altlasten

Umwelttechnik

Hydrogeologie

Bild 6: Ansatzpunkt RKS6

Neubau BRK, Kitzingen	Projekt Nr: 221130
Position: Bilddokumentation Ansatzpunkte der Aufschlüsse	Anlage: 4.3

Altlasten

Umwelttechnik

Hydrogeologie

Bild 6: Ansatzpunkt RKS8

Projekt: Neubau BRK, Kitzingen	Projekt Nr: 221130
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.4

Altlasten

Umwelttechnik

| Hydrogeologie

Bild 5: Ansatzpunkt RKS9

Bild 6: Ansatzpunkt RKS10

Neubau BRK, Kitzingen	Projekt Nr: 221130
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.5

Altlasten

Umwelttechnik

Hydrogeologie

Akkreditiertes Prüflabor DIN EN 17025

Projekt: Neubau BRK, Kitzingen

Tabelle: Bodenproben

Auf- schluss	Labor- Nr.	gP	uP	Entnahmetiefe [m u. GOK]	Bodenart	Bemerkung
	21/2468	Χ		0,40 - 0,75	S, u*, o, g' [A]	RP
51/0	21/2469	Х		0,75 - 1,70	S, u, o' [q]	w _n , kk
	21/2470	Х		1,70 - 2,30	S, u, g' [q]	RP
RKS 1	21/2471	Х		2,30 - 3,30	S, u' [q]	w _n , kk
	21/2472	Х		3,30 - 3,90	U, s, t, o [q]	RP
	21/2473	Х		3,90 - 4,70	S, g [q]	RP
	21/2474	Х		0,90 - 2,30	S, o, u' [q]	w _n , kk, V _{gl}
RKS 2	21/2475	Х		2,30 - 3,50	T, u*, s, o [q]	w _n , kk, w _{fa}
KNS Z	21/2476	Х		3,50 - 4,50	S, g [q]	RP
	21/2477	Х		4,50 - 4,70	Tst [ku]	RP
	21/2478	Х		0,50 - 1,30	S, u, o', g' [q]	RP
	21/2479	Х		1,30 - 2,70	S, u, t, o' [q]	w _n , kk, w _{fa}
RKS 3	21/2480	Х		2,70 - 3,80	S, g, u' [q]	RP
	21/2481	Χ		3,80 - 4,70	U, s, t [q]	RP
	21/2482	Х		4,70 - 5,00	S, u* [q]	RP
	21/2483	Χ		0,55 - 1,10	S, u', o', g' [q]	RP
RKS 4	21/2484	Х		1,10 - 2,30	S, u, g [q]	RP
	21/2485	Х		2,30 - 4,60	S, g*, u [q]	w _n , kk
	21/2486	Χ		4,60 - 5,00	Tst [ku]	RP
	21/2487	Χ		0,55 - 0,80	S, u [q]	RP
RKS 5	21/2488	X		0,80 - 2,20	S, t, u [q]	Wn, kk, Wfa
	21/2489	Χ		2,20 - 3,30	S, g, u [q]	RP
	21/2490	Χ		3,30 - 3,60	Tst [ku]	RP
RKS 6	21/2491	Х		0,40 - 1,10	S, u', g' [q]	RP
KKO 0	21/2492	Х		1,10 - 2,20	G, s*, u [q]	w _n , kk
	21/2493	Х		0,40 - 1,20	S, u, o' [q]	RP
RKS 7	21/2494	Х		1,20 - 1,90	U, s*, t, g' [q]	RP
Tato 7	21/2495	Х		1,90 - 2,90	S, g, u', o' [q]	RP
	21/2496	Χ		2,90 - 4,10	U, s, t [q]	RP
	21/2497	Χ		0,40 - 1,40	S, o', u' [q]	RP
RKS 8	21/2498	X		1,40 - 3,60	S, u, o', g'[q]	w _n , kk
	21/2499	Χ		3,60 - 4,30	S, u, g' [q]	RP
	21/2500	Χ		0,40 - 0,90	S, u, o', g' [q]	RP
RKS 9	21/2501	Х		0,90 - 1,70	U, s*, t, g' [q]	RP
INIO 3	21/2502	Х		1,70 - 2,90	S, g, u', o' [q]	RP
	21/2503	Х		2,90 - 4,40	S, u*, t, g' [q]	RP
	21/2504	Х		0,40 - 0,70	S, u', o' [q]	RP
RKS 10	21/2505	Х		0,70 - 1,00	U, s*, t [q]	RP
IXIXO IU	21/2506	Х		1,00 - 2,10	S, g, u, o' [q]	RP
	21/2507	Х		2,10 - 2,40	U, t, s, g [q-ku]	RP

 w_n : natürlicher Wassergehalt w_{fa} : Wassergehalt an der Fließ- und Ausrollgrenze

kk: Kornverteilungsanalysen V_{gl}: Glühverlust

gP: gestörte Bodenprobe (Güteklasse 3/4) uP: ungestörte Bodenprobe (Güteklasse 1/2)

RP:Rückstellprobe

Projekt: Neubau BRK, Kitzingen

Tabelle: Für orientierende abfalltechnische Untersuchungen entnommene Boden-/Materialproben

Aufschluss	Entnahmetiefe [in m u. GOK]	Material	Verwendung, Analytik			
	0,0 - 0,4	Auffüllung: Sand, stark schluffig, schwach kiesig, humos (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP			
	0,4 - 0,75	Auffüllungen: Sand, stark schluffig, sehr schwach kiesig, organisch; Fremdbestandteile: <1% Ziegelreste	MP1 LAGA			
	0,75 – 1,7	Nat. Untergrund: Sand, schluffig, sehr schwach kiesig, schwach organisch	MP2 LAGA			
RKS 1	1,7 – 2,3	Nat. Untergrund: Sand, schluffig, sehr schwach kiesig	MP2 LAGA			
	2,3 – 3,3	Nat. Untergrund: Sand, schluffig	MP2 LAGA			
	3,3 – 3,9	Nat. Untergrund: Schluff, sandig, tonig, organisch				
	3,9 – 4,7	Nat. Untergrund: Sand, kiesig	MP2 LAGA			
	0,0-0,4	Auffüllungen: Sand, stark schluffig, sehr schwach kiesig, humos, organisch (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP			
	0,4 - 0,9	Auffüllungen: Sand, stark schluffig, sehr schwach kiesig, organisch; Fremdbestandteile: <1% Ziegelreste	MP1 LAGA			
DIVE 2	0,9 – 2,3	Nat. Untergrund: Sand, schwach schluffig, organisch	MP2 LAGA			
RKS 2	2,3 – 3,5	Nat. Untergrund: Schluff, tonig, sandig, organisch	MP2 LAGA			
	3,5 – 4,5	Nat. Untergrund: Sand, kiesig	MP2 LAGA			
	4,5 – 4,7	Nat. Untergrund: Tonstein	MP4 LAGA			
	0,0 - 0,5	Auffüllungen: Sand, stark schluffig, sehr schwach kiesig, sehr schwach humos (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP			
	0,5 – 1,3	Nat. Untergrund: Sand, schluffig, sehr schwach kiesig, schwach organisch	MP2 LAGA			
DIVO O	1,3 – 2,7	Nat. Untergrund: Schluff, stark sandig, tonig, schwach organisch	MP2 LAGA			
RKS 3	2,7 – 3,8	Nat. Untergrund: Sand, kiesig, sehr schwach schluffig	MP2 LAGA			
	3,8 – 4,7	Nat. Untergrund: Schluff, sandig, tonig	MP2 LAGA			
	4,7 – 5,0	Nat. Untergrund: Sand, stark schluffig	MP2 LAGA			
	0,0 - 0,55	Auffüllungen: Sand, schluffig, sehr schwach kiesig, humos, Wurzeln (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP			
	0,55 – 1,1	Nat. Untergrund: Sand, schwach schluffig, sehr schwach kiesig, schwach organisch	MP2 LAGA			
RKS 4	1,1 – 2,3	Nat. Untergrund: Sand, schluffig, kiesig	MP2 LAGA			
	2,3 – 4,6	Nat. Untergrund: Sand, kiesig, schluffig	MP2 LAGA			
	4,6 – 5,0	Nat. Untergrund: Tonstein	MP4 LAGA			
	0,0 - 0,55	Auffüllungen: Sand, schluffig, sehr schwach kiesig, humos (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP			
	0,55 - 0,8	Nat. Untergrund: Sand, schluffig	MP3 LAGA			
RKS 5	0,8 – 2,2	Nat. Untergrund: Schluff, stark sandig, sehr schwach kiesig	MP3 LAGA			
	2,2 – 3,3	Nat. Untergrund: Sand, kiesig, schluffig	MP3 LAGA			
	3,3 – 3,6	Nat. Untergrund: Tonstein	MP4 LAGA			
	0,0 - 0,4	Auffüllungen: Sand, schluffig, sehr schwach kiesig, humos, organisch (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP			
RKS 6	0,4 – 1,1	Nat. Untergrund: Sand, schwach schluffig, sehr schwach kiesig	MP3 LAGA			
	1,1 – 2,2	Nat. Untergrund: Sand, stark kiesig, stark schluffig, tonig	MP3 LAGA			

Projekt: Neubau BRK, Kitzingen

Tabelle: Für orientierende abfalltechnische Untersuchungen entnommene Boden-/Materialproben

Aufschluss	Entnahmetiefe [in m u. GOK]	[in m u. GOK]						
	0,0 - 0,4	Auffüllungen: Sand, schluffig, humos, organisch (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP					
	0,4 - 1,2	Nat. Untergrund: Sand, schluffig, schwach organisch	MP3 LAGA					
RKS 7	1,2 – 1,9	Nat. Untergrund: Schluff, stark sandig, schwach kiesig, tonig	MP3 LAGA					
	1,9 – 2,9	Nat. Untergrund: Sand, kiesig, sehr schwach schluffig, sehr schwach organisch	MP3 LAGA					
	2,9 – 4,1	Nat. Untergrund: Schluff, sandig, tonig	MP3 LAGA					
	0,0 - 0,4	Auffüllungen: Sand, schwach schluffig, schwach kiesig, humos, organisch (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP					
DI/O o	0,4 - 1,4	Nat. Untergrund: Sand, sehr schwach schluffig, schwach organisch	MP3 LAGA					
RKS 8	1,4 – 3,6	Nat. Untergrund: Sand, schluffig, schwach organisch, sehr schwach kiesig	MP3 LAGA					
	3,6 – 4,3	Nat. Untergrund: Feinsand, schluffig, schwach kiesig	MP3 LAGA					
	0,0 - 0,4	Auffüllungen: Sand, schluffig, schwach kiesig, humos, organisch (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP					
	0,4 - 0,9	Nat. Untergrund: Sand, schluffig, sehr schwach kiesig, schwach organisch	MP3 LAGA					
RKS 9	0,9 – 1,7	Nat. Untergrund: Schluff, stark sandig, schwach kiesig	MP3 LAGA					
	1,7 – 2,9	Nat. Untergrund: Sand, kiesig, sehr schwach schluffig, sehr schwach organisch	MP3 LAGA					
	2,9 – 4,4	Nat. Untergrund: Sand, stark schluffig, tonig, schwach kiesig	MP3 LAGA					
	0,0 - 0,4	Auffüllungen: Sand, schluffig, humos, organisch (Oberboden); Fremdbestandteile: <1% Ziegelreste	RP					
RKS 10	0,4 - 0,7	Nat. Untergrund: Sand, schwach schluffig, schwach organisch	MP3 LAGA					
	0,7 - 1,0	Nat. Untergrund: Schluff, stark sandig, tonig	MP3 LAGA					
	1,0 – 2,1	Nat. Untergrund: Sand, kiesig, schluffig, schwach organisch	MP3 LAGA					
	2,1 – 2,4	Nat. Untergrund: Schluff, tonig, sandig, kiesig	MP3 LAGA					

MP..: Einzelprobe wurde zur Herstellung einer Mischprobe verwendet;

RP: Rückstellprobe;

LAGA: Mitteilungen der Länderarbeitsgemeinschaft Abfall "Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen - Technische Regeln" Teil II, Stand 06.11.1997

J:\PROJEKTE\2021\221130\SCHREIBZ\g1 - Anlage 6.doc

Anlage 6, Seite 2 von 2

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17- 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Zusammenstellung der Laborversuche

Zı	usar	nmei	nstellung	der Lab	orversu	che	
Labornummer			21/2469	21/2471	21/2474	21/2475	21/2479
Entnahmestelle			RKS 1	RKS 1	RKS 2	RKS 2	RKS 3
Entnahmetiefe		m	0,75-1,70	2,30-3,30	0,90-2,30	2,30-3,50	1,30-2,70
Hauptbodenart Beimengung		-	Sand Schluff, org.	Sand Schluff	Sand Schluff, org.	Ton Schluff, Sand, org.	Sand Schluff, Ton, org.
			(q)	(q)	(q)	(q)	(q)
Farbe			dunkelbraun	braun	grau	grau/braun	grau/braun
ungestört/gestört			gest.	gest.	gest.	gest	gest.
Wichte des feuchten Bodens	γ	kN/m³					
Wassergehalt	Wn	1	0,180	0,168	0,159	0,275	0,144
Porenanteil	n	1					
Porenzahl	е	1					
Kornwichte	γs	kN/m³					
Kornkennziffer			0280	0190	0190	4420	2260
Ungleichförmigkeitszahl	U	1					
Wirksamer Korndurchmesser	d _w	mm					
Fließgrenze	WL	1				0,551	0,368
Ausrollgrenze	W _P	1				0,201	0,183
Plastizitätszahl	Ι _P	1				0,350	0,185
Konsistenzzahl	I _c	1				0,79	1,21
Undrainierte Scherfestigkeit 1)	Cu	kN/m²				73	
lockerste Lagerung	max n	1					
dichteste Lagerung	min n	1					
Lagerungsdichte	D	1					
einfache Proctordichte	ρ_{pr}	t/m³					
optimaler Wassergehalt	W _{pr}	1					
erreichbare Verdichtung bei w _n	D _{Pr}	%					
Steifemodul $\sigma = 0.05 - 0.1 \text{ MN/m}^2$	Es	MN/m²					
Steifemodul $\sigma = 0.1 - 0.2 \text{ MN/m}^2$	Es	MN/m²					
Steifemodul $\sigma = 0.2 - 0.3 \text{ MN/m}^2$	Es	MN/m²					
Kompressionsbeiwert	C _c						
Reibungswinkel	φ	0					
Kohäsion	С	kN/m²					
Laborflügelscherfestigkeit 4)	c _{fv} /c _{Rv}	kN/m²					
Einaxiale Druckfestigkeit	q _u	MN/m²					
Abrasivität Cerchar	CAI						
Abrasivität LCPC	LAK	g/t					
Glühverlust	V_{gl}	M%			1,0		
Kalkgehalt	V _{Ca}	%			<u> </u>		
Veränderungsgrad ³⁾							
Durchlässigkeitsbeiwert	k _f	m/s					
Klassifizierung nach DIN 18196			SU*/ST*	SU/ST	SU/ST	TA	TM
Undrainierte Scherfestigkeit aus Ic [Kiekbus			2) Wassergehalt der bind			4689 Tab. 5 bei 24 h Wa	

¹⁾ Undrainierte Scherfestigkeit aus Ic [Kiekbusch, Bautechnik 76]

Gemittelt aus 3 Versuchen an Ober- und Unterseite der Probe
Projekt:

Projekt-Nr.: Anlage: **221130 7.1**

²⁾ Wassergehalt der bindigen Bestandteile

³⁾ Nach DIN EN ISO 14689 Tab. 5 bei 24 h Wasserbedeckung

⁵⁾ Undrainierter Versuch

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17- 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Zusammenstellung der Laborversuche

Zl	ısar	nme	nstellung	g der Lar	orversu	cne	
Labornummer			21/2485	21/2488	21/2492	21/2498	
Entnahmestelle			RKS 4	RKS 5	RKS 6	RKS 8	
Entnahmetiefe		m	2,30-4,60	0,80-2,20	1,10-2,20	1,40-3,60	
Hauptbodenart Beimengung			Sand Kies, Schluff	Sand Ton, Schluff	Kies Sand, Schluff	Sand Schluff, Kies, org.	
			(q)	(q)	(q)	(q)	
Farbe			braun/grau	grau/braun	braun/grau	grau	
ungestört/gestört			gest.	gest.	gest.	gest.	
Nichte des feuchten Bodens	γ	kN/m³					
Wassergehalt	Wn	1	0,107	0,137	0,086	0,106	
Porenanteil	n	1					
Porenzahl	е	1					
Kornwichte	γs	kN/m³					
Kornkennziffer			0253	3250	0244	0271	
Jngleichförmigkeitszahl	U	1					
Wirksamer Korndurchmesser	d _w	mm					
Fließgrenze	WL	1		0,422			
Ausrollgrenze	W _P	1		0,189			
Plastizitätszahl	I _P	1		0,233			
Konsistenzzahl	Ic	1		1,22			
Jndrainierte Scherfestigkeit 1)	C _u	kN/m²					
ockerste Lagerung	max n	1					
dichteste Lagerung	min n	1					
_agerungsdichte	D	1					
einfache Proctordichte	ρ_{pr}	t/m³					
optimaler Wassergehalt	W _{pr}	1					
erreichbare Verdichtung bei w _n	D _{Pr}	%					
Steifemodul $\sigma = 0.05 - 0.1 \text{ MN/m}^2$	E _s	MN/m²					
Steifemodul $\sigma = 0,1 - 0,2 \text{ MN/m}^2$	Es	MN/m²					
Steifemodul $\sigma = 0.2 - 0.3 \text{ MN/m}^2$	Es	MN/m²					
Kompressionsbeiwert	C _C						
Reibungswinkel	φ	0					
Kohäsion	С	kN/m²					
_aborflügelscherfestigkeit 4)	c _{fv} /c _{Rv}	kN/m²					
Einaxiale Druckfestigkeit	q _u	MN/m²					
Abrasivität Cerchar	CAI						
Abrasivität LCPC	LAK	g/t					
Glühverlust	V _{gl}	M%					
Kalkgehalt	V _{Ca}	%					
Veränderungsgrad 3)							
Durchlässigkeitsbeiwert	k _f	m/s					
Klassifizierung nach DIN 18196			SU*/ST*	TM	GU*/GT*	SU*/ST*	

¹⁾ Undrainierte Scherfestigkeit aus Ic [Kiekbusch, Bautechnik 76]

⁴⁾ Gemittelt aus 3 Versuchen an Ober- und Unterseite der Probe

5) Undrainierter Versuch

Projekt:
Neubau BRK, Kitzingen
Projekt-Nr.: Anlage:
221130 7.2

²⁾ Wassergehalt der bindigen Bestandteile

³⁾ Nach DIN EN ISO 14689 Tab. 5 bei 24 h Wasserbedeckung

Baugrund | Altlasten

Umwelttechnik

Hydrogeologie

Akkreditiertes Prüflabor DIN EN 17025

Bestimmung des Wassergehaltes

durch Ofentrocknung nach EN ISO 17892-1:2015-03

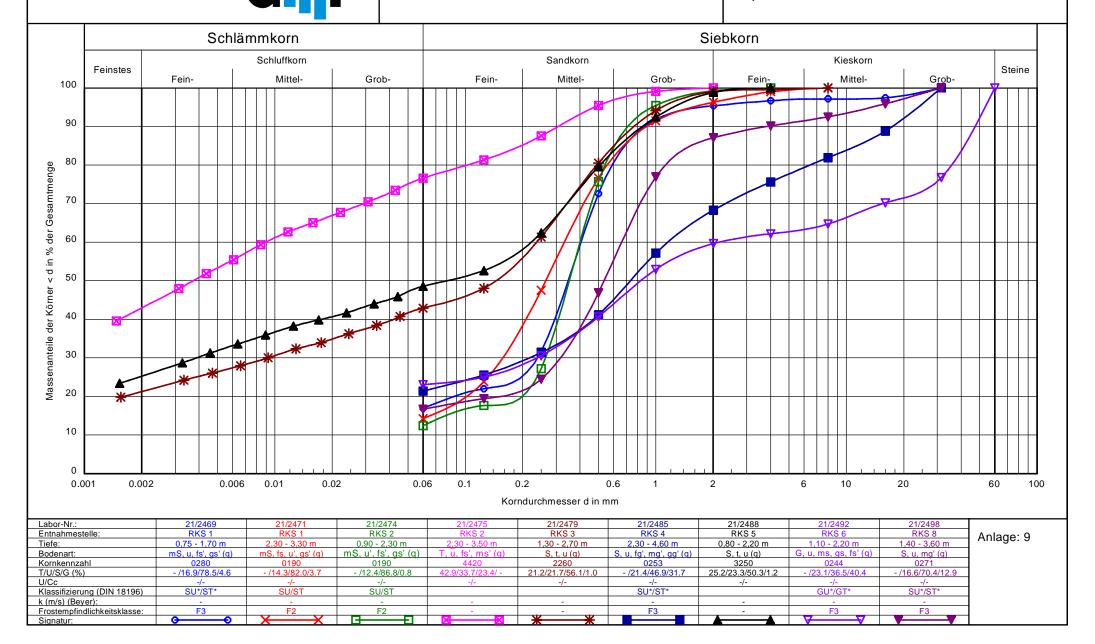
Projekt - Nr:	221130	Entnahmeart:	gestört
Projekt:	Neubau BRK, Kitzingen	Entnahme am:	09./10.06.2021
Ausaf durch:	Δ T Datum: 20.06.2021		

Labornummer	21/2469	21/2471	21/2474
Entnahmestelle:	RKS 1	RKS 1	RKS 2
Entnahmetiefe [m]:	0,75 - 1,00	2,30 - 3,30	0,90 - 2,30
Behälter Nr.	Schüssel	Schüssel	Schüssel
Feuchte Probe + Behälter m+m₀ [g]	996,9	979,6	989,7
Trock. Probe + Behälter m₁ + m₂ [g]	871,8	861,9	876,5
Behälter m₀ [g]	175,8	160,8	162,9
Wasser (ma+mb)-(md+mb)=mw [g]	125,1	117,7	113,2
Trockene Probe md [g]	696,0	701,1	713,6
Wassergehalt w=(mw/md).100 [%]	18,0	16,8	15,9

Labornummer	21/2475	21/2479	21/2485
Entnahmestelle:	RKS 2	RKS 3	RKS 4
Entnahmetiefe [m]:	2,30 - 3,50	1,30 - 2,70	2,30 - 4,60
Behälter Nr.	T 5	H 1	Schüssel
Feuchte Probe + Behälter m+m♭ [g]	174,82	320,40	1063,9
Trock. Probe + Behälter m₀ + m₀ [g]	148,61	289,21	996,6
Behälter m₅ [g]	53,47	71,98	366,8
Wasser (ma+mb)-(md+mb)=mw [g]	26,21	31,19	67,3
Trockene Probe m _d [g]	95,14	217,23	629,8
Wassergehalt w=(mw/md).100 [%]	27,5	14,4	10,7

Labornummer	21/2488	21/2492	21/2498
Entnahmestelle:	RKS 5	RKS 6	RKS 8
Entnahmetiefe [m]:	0,80 - 2,20	1,10 - 2,20	1,40 - 3,60
Behälter Nr.	Т3	Schüssel	Schüssel
Feuchte Probe + Behälter m+m₅ [g]	182,61	1664,9	1383,3
Trock. Probe + Behälter md + mb [g]	165,65	1562,3	1284,8
Behälter m₅ [g]	41,71	363,7	357,2
Wasser (ma+mb)-(md+mb)=mw [g]	16,96	102,6	98,5
Trockene Probe md [g]	123,94	1198,6	927,6
Wassergehalt w=(m _w /m _d).100 [%]	13,7	8,6	10,6

Projekt:	Projekt-Nr.:	Anlage:
Neubau BRK, Kitzingen	221130	8

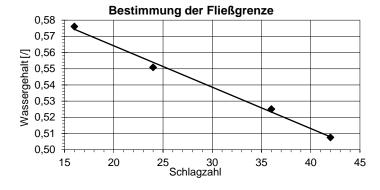

GMP Geotechnik GmbH & Co.KG

Beratende Ingenieure und Geologen Hedanstraße 17, 97084 Würzburg Tel. 0931/6144-0, Fax 0931/6144-200

Körnungslinie nach DIN EN ISO 17892-4

Projekt: Neubau BRK, Kitzingen

Projekt-Nr.: 221130

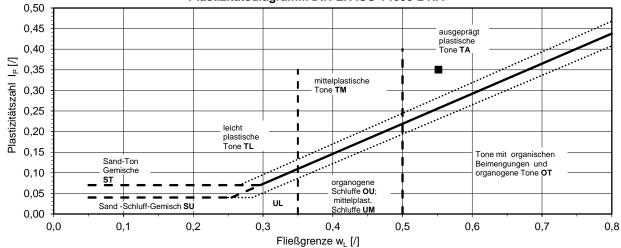


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12									
Labor-Nr.:	Labor-Nr.: 21/2475 Entnommen am: 09.06.2021 w _{ges} [-]:									
Entnahmestelle:	RKS 2	Angeliefert am:		w _{<0,4} [-]:	0,275					
Tiefe [m u AP]:	2,30 - 3,50 m	Durchgeführt am:	07.07.2021	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000					
Entnahmeart:	gestört	Durchgeführt von:	A.T							
Bodengruppe:	TA	Ausgewertet von:	Oe							

Bemerkung:

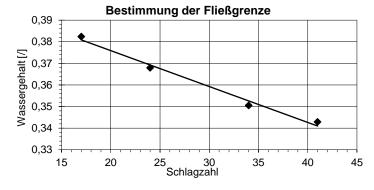
	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	16	24	36	42			
Feuchte Probe + Behälter m + m _b [g]	111,00	108,27	99,56	107,04	54,60	55,29	
Trock. Probe + Behälter m _d + m _b [g]	90,37	88,99	83,84	88,92	52,89	53,34	
Behälter m _b [g]	54,56	53,99	53,90	53,22	44,33	43,70	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	20,63	19,28	15,72	18,12	1,71	1,95	
Trockene Probe m _d [g]	35,81	35,00	29,94	35,70	8,56	9,64	
Wassergehalt $w = (m_w / m_d) [/]$	0,576	0,551	0,525	0,508	0,200	0,202	


Wassergehalt w_{<0,4} [/]: 0,275 Fließgrenze w_L [/]: 0,551 Ausrollgrenze w_P [/]: 0,201 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,350 Konsistenzzahl $I_{C,<0,4}$ = (W_L - $W_{<0,4}$)/ I_P [/]: 0,789

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest
				•		
0,0	00 0	,25 0,	50 0,	75 1,	00 1,	25 1,50

Projekt-Nr.: Anlage: Neubau BRK, Kitzingen 221130 10.1

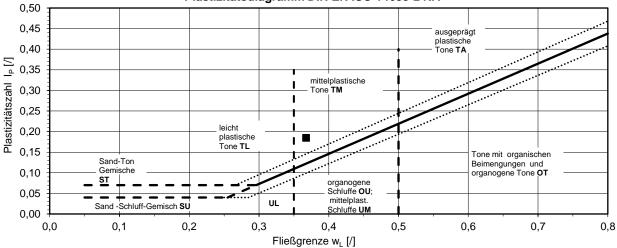


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de

	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12										
Labor-Nr.:	21/2479	09.06.2021	w _{ges} [-]:	0,144							
Entnahmestelle:	RKS 3	Angeliefert am:		w _{<0,4} [-]:	0,144						
Tiefe [m u AP]:	1,30 - 2,70 m	Durchgeführt am:	02.07.2021	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000						
Entnahmeart:	gestört	Durchgeführt von:	A.T								
Bodengruppe:	ТМ	Ausgewertet von:	Oe								

Bemerkung:

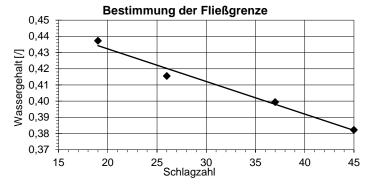
	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	17	24	34	41			
Feuchte Probe + Behälter m + m _b [g]	106,85	91,11	112,57	92,55	67,68	68,31	
Trock. Probe + Behälter m _d + m _b [g]	89,42	78,06	97,34	79,57	65,66	66,20	
Behälter m _b [g]	43,84	42,59	53,89	41,71	54,54	54,71	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	17,43	13,05	15,23	12,98	2,02	2,11	
Trockene Probe m _d [g]	45,58	35,47	43,45	37,86	11,12	11,49	
Wassergehalt $w = (m_w / m_d) [/]$	0,382	0,368	0,351	0,343	0,182	0,184	


 $\label{eq:wassergehalt} \begin{array}{ll} Wassergehalt \ w_{<0,4} \ \ [/]: & 0,144 \\ Fließgrenze \ w_L \ [/]: & 0,368 \\ Ausrollgrenze \ w_P \ [/]: & 0,183 \\ Plastizitätszahl \ I_P = \ w_L - \ w_P \ [/]: & 0,185 \\ Konsistenzzahl \ I_{C,<0,4} = \ (w_L - \ w_{<0,4})/I_P \ [/]: & 1,209 \\ \end{array}$

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	est/fest	
					•		
0,0	00 0,	25 0,	50 0,	, 75 1,	00 1,	25 1,50	0

Projekt: Projekt-Nr.: Anlage:
Neubau BRK, Kitzingen 221130 10.2

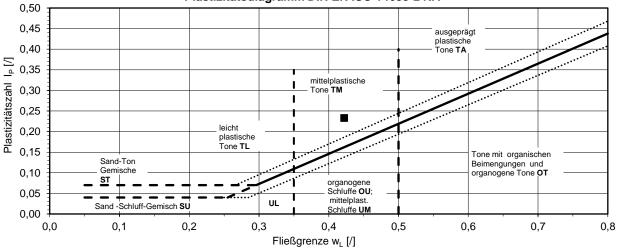


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de

	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12										
Labor-Nr.:	21/2488	09.06.2021	w _{ges} [-]:	0,137							
Entnahmestelle:	RKS 5	Angeliefert am:		w _{<0,4} [-]:	0,137						
Tiefe [m u AP]:	0,80 - 2,20 m	Durchgeführt am:	06.07.2021	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000						
Entnahmeart:	gestört	Durchgeführt von:	T.S								
Bodengruppe:	ТМ	Ausgewertet von:	Oe								

Bemerkung:

	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	19	26	37	45			
Feuchte Probe + Behälter m + m _b [g]	103,72	101,89	106,12	103,34	66,20	53,66	
Trock. Probe + Behälter m _d + m _b [g]	85,46	87,83	90,71	86,33	64,36	51,75	
Behälter m _b [g]	43,70	53,99	52,13	41,83	54,55	41,72	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	18,26	14,06	15,41	17,01	1,84	1,91	
Trockene Probe m _d [g]	41,76	33,84	38,58	44,50	9,81	10,03	
Wassergehalt $w = (m_w / m_d) [/]$	0,437	0,415	0,399	0,382	0,188	0,190	·


 $\label{eq:wassergehalt} \begin{array}{ll} Wassergehalt \ w_{<0,4} \ \ [/]: & 0,137 \\ Fließgrenze \ w_L \ [/]: & 0,422 \\ \\ Ausrollgrenze \ w_P \ [/]: & 0,189 \\ \\ Plastizitätszahl \ I_P = \ w_L - \ w_P \ [/]: & 0,233 \\ \\ Konsistenzzahl \ I_{C,<0,4} = \ (w_L - \ w_{<0,4})/I_P \ [/]: & 1,223 \\ \end{array}$

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest
					•	
0,0	00 0,	,25 0,	50 0,	75 1,	00 1,	25 1,50

Projekt: Projekt-Nr.: Anlage:
Neubau BRK, Kitzingen 221130 10.3

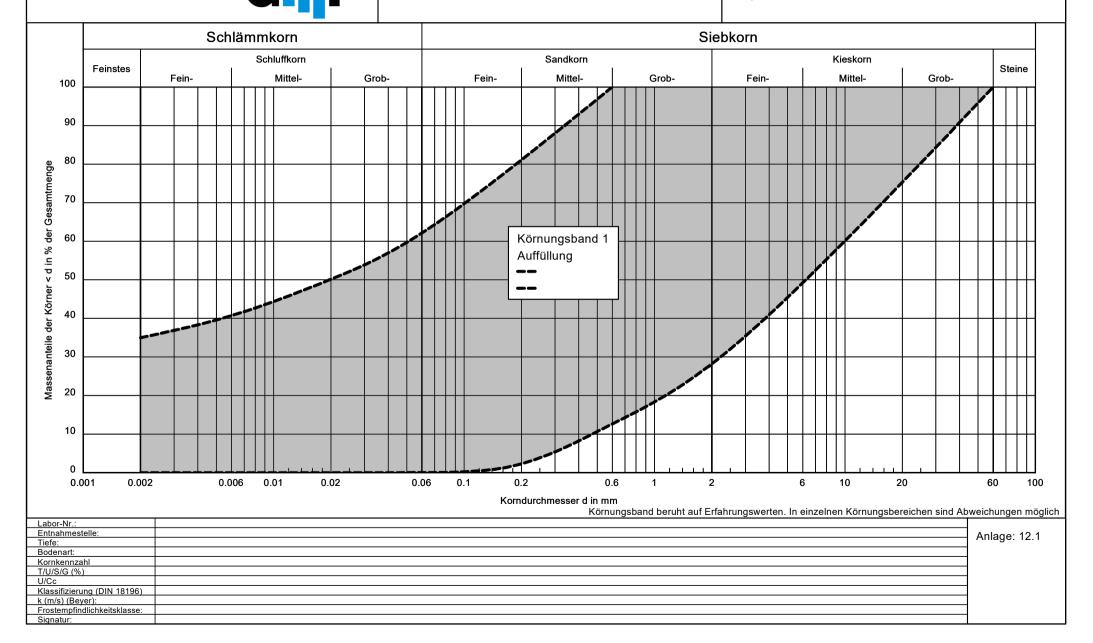
Bestimmung des Glühverlustes

bei 550 Grad Celsius nach DIN 18128

Ausgeführt durch	Ausgeführt durch E.B		gestört		
ausgewertet durch:	Oe	Entnahme am:	09.06.2021		
Datum:	30.06.2021				

Labornummer:	21/2474	
Entnahmestelle:	RKS 2	
Entnahmetiefe [m]:	0,90 - 2,30	
Behälter Nr.	1	
Trockene Probe + Behälter m+m₀ [g]	205,14	
Geglühte Probe + Behälter m _g + m₅ [g]	204,72	
Behälter m₀ [g]	163,14	
Glühverlust (ma+mb)-(mg+mb)=mgl [g]	0,42	
Trockene Probe md [g]	42	
Glühverlust wg =(m _w /m _d).100 [%]	1,00	

Projekt: Proj. Nr. Anlage
Neubau BRK, Kitzingen 221130 11

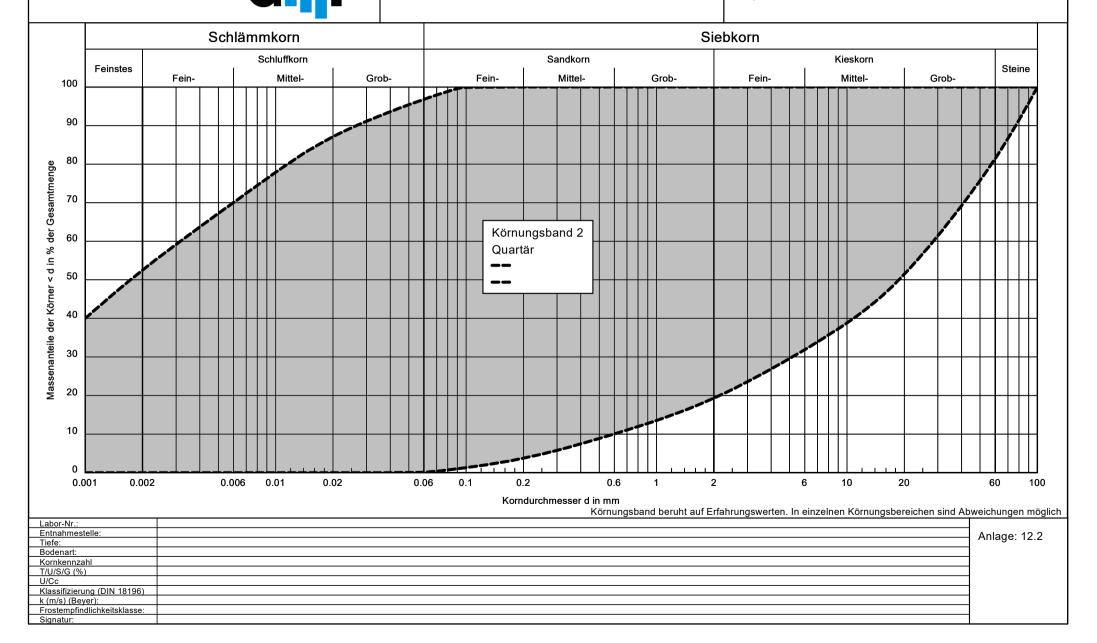

GMP Geotechnik GmbH & Co.KG

Beratende Ingenieure und Geologen Hedanstraße 17, 97084 Würzburg Tel. 0931/6144-0, Fax 0931/6144-200

Körnungslinie nach DIN EN ISO 17892-4

Projekt: Neubau BRK, Kitzingen

Projekt-Nr.: 221130


GMP Geotechnik GmbH & Co.KG

Beratende Ingenieure und Geologen Hedanstraße 17, 97084 Würzburg Tel. 0931/6144-0, Fax 0931/6144-200

Körnungslinie nach DIN EN ISO 17892-4

Projekt: Neubau BRK, Kitzingen

Projekt-Nr.: 221130

Anhang

Prüfbericht Chemisches Labor Dr. Graser, Schonungen

21/06/2120804

CLG Chemisches Labor Dr. Graser KG • Goldellern 5 • 97453 Schonungen

GMP - Geotechnik GmbH & Co. KG Beratende Ingenieure und Geologen Herrn Reinhart Hedanstraße 17 97084 Würzburg CLG Chemisches Labor Dr. Graser KG Goldellern 5 97453 Schonungen

Telefon: 0 97 21 / 75 76-0 Telefax: 0 97 21 / 75 76-50 E-Mail: clg@labor-graser.de

Schonungen, 24.06.2021

- Seite 1 von 2 -

Prüfbericht 21/06/2120804

Projekt: Neubau BRK-Zentrum Lochweg, Kitzingen

Projekt-Nummer: 221130

Prüfauftrag: Untersuchung nach DIN 4030 zur Beurteilung der

Betonaggressivität

Probenart Wasser

Probenbezeichnung: RKS 1 (Entnahmetiefe: 0,69 m)

Datum der Probenahme: 09.06.2021

Probenehmer: Herr Karim, Auftraggeber

Zustellungsform: Anlieferung durch Vogt Th., CLG

Probeneingang: 10.06.2021, CLG

Eingangsnummer: 2120804

Untersuchungszeitraum: 10.06. - 14.06.2021

- Seite 2 von 2 zum Prüfbericht 21/06/2120804

Methoden

Aussehen

Visuelle Bestimmung [G] DEV B1/2, Teil a: 1971 (mit und ohne Säurezusatz) [G] Geruch

pH-Wert DIN EN ISO 10523 (C5): 2012-04 [G] DIN 38404-4: 1976-12 [G] Temperatur

DIN 4030-2: 2008-06, Ziffer 6.2.3 [G] KMnO₄-Verbrauch

DIN 38406-3-3 [G] Härte

Härtehydrogencarbonat berechnet aus Säurekapazität [G]

Differenz aus Gesamthärte und Carbonathärte [G] Nichtkarbonathärte

DIN EN ISO 11885 (E22): 2009-09 [T/G] Magnesium

Ammonium DIN 38406-5: 1983-10 [G]

Sulfat, Chlorid DIN EN ISO 10304-1 (D20): 2009-07 [G]

DIN 38409-7: 2005-12 (Probe mit bzw. ohne Marmorkalk) [G] DIN 4030-2: 2008-06, Ziffer 6.2.9 (Marmorversuch nach Heyer) [G] Säurekapazität bis pH 4,3 CO₂ kalklösend

Sulfid DIN 38405-27: 1992-07 [G]

Untersuchungsergebnisse

Parameter	Dimension	Probenbezeichnung	Grenzwerte z	Grenzwerte zur Beurteilung nach DIN 4030 ^{a)}				
		RKS 1 (Entnahmetiefe: 0,69 m)	schwach angreifend (XA1)	stark angreifend (XA2)	sehr stark angreifend (XA3)			
		E-Nr. 2120804						
Färbung	-	braun	-	-	-			
Trübung		undurchsichtig						
Geruch (unveränderte Probe)	-	muffig	-	-	-			
Geruch (angesäuerte Probe)	-	unauffällig	-	-	-			
pH-Wert bei 15,2°C	-	7,32	6,5 bis 5,5	< 5,5 - 4,5	< 4,5			
Kaliumpermanganat- verbrauch (KMnO ₄)	mg/l	9,8	-	-	-			
Härte (CaO)	mg/l	349	-	-	-			
Härtehydrogencarbonat (CaO)	mg/l	233	-	-	-			
Nichtcarbonathärte (CaO)	mg/l	117	-	-	-			
Magnesium (Mg ²⁺)	mg/l	47,3	300 bis 1000	> 1000 bis 3000	> 3000			
Ammonium (NH ₄ +)	mg/l	0,14	15 bis 30	> 30 bis 60	> 60			
Sulfat (SO ₄ ²⁻)	mg/l	121	200 bis 600	> 600 bis 3000	> 3000			
Chlorid (Cl ⁻)	mg/l	54,5	-	-	-			
CO ₂ kalklösend (kalklösende Kohlensäure berechnet als CO ₂)	mg/l	< 2,0	15 bis 40	> 40 bis 100	> 100			
Sulfid (S ²⁻)	mg/l	< 0,02	-	-	-			

[[]G] = Durchführung am Standort Goldellern 5;

Beurteilung nach DIN 4030 (Stand: Juni 2008):

a) Für die Beurteilung ist der höchste Angriffsgrad maßgebend, auch wenn er nur von einem der Werte erreicht wird. Liegen zwei oder mehrere Werte im oberen Viertel eines Bereiches (bei pH im unteren Viertel), so erhöht sich der Angriffsgrad um eine Stufe (ausgenommen Meerwasser und Niederschlagswasser).

Nach DIN 4030 gilt das untersuchte Wasser als <u>nicht betonangreifend</u>.

S. Reuter, M.Sc. Chemie (stellvertr. Laborleiter)

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung oder Abänderung des Berichts ist ohne unsere schriftliche Genehmigung nicht zulässig. Wenn nicht anders vereinbart -und soweit sinnvoll- werden die Proben 2 Monate (gerechnet ab Probeneingang) im Labor aufbewahrt.

[[]T] = Durchführung am Standort Tiefer Graben 2

Anhang

Prüfbericht AGROLAB Labor GmbH, Bruckberg

3167249 - 801560

3167249 - 801561

3167249 - 801562

3167249 - 801563

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801560

Auftrag 3167249 221130 Neubau BRK Kitzingen Analysennr. 801560 Mineralisch/Anorganisches Material

Probeneingang 01.07.2021 Probenahme 29.06.2021

Probenehmer Auftraggeber (Herr Makboul)
Kunden-Probenbezeichnung MP1 RKS 1+2 (0,4-0,9 m)

LAGA II. LAGA II. LAGA II. LAGA II. 1.2-2/-3, '97 1.2-2/-3, '97 1.2-2/-3, Z 0 Z 1.1 Z 1.2 '97 Z 2

Einheit Ergebnis Z 0 Z 1.1 Z 1.2 '97 Z 2 Best.-Gr.

Feststoff

Verfahren sind mit dem Symbol " *) " gekennzeichnet.

akkreditierte

in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht

Analyse in der Gesamtfraktion							
Trockensubstanz	%	° 83,1					0,1
pH-Wert (CaCl2)		7,8	5,5-8	5,5-8	5-9		0
Cyanide ges.	mg/kg	<0,3	1	10	30	100	0,3
EOX	mg/kg	<1,0	1	3	10	15	1
Königswasseraufschluß							
Arsen (As)	mg/kg	6,7	20	30	50	150	0,8
Blei (Pb)	mg/kg	290	100	200	300	1000	2
Cadmium (Cd)	mg/kg	<0,2	0,6	1	3	10	0,2
Chrom (Cr)	mg/kg	20	50	100	200	600	1
Kupfer (Cu)	mg/kg	26	40	100	200	600	1
Nickel (Ni)	mg/kg	19	40	100	200	600	1
Quecksilber (Hg)	mg/kg	0,18	0,3	1	3	10	0,05
Thallium (TI)	mg/kg	<0,1	0,5	1	3	10	0,1
Zink (Zn)	mg/kg	45	120	300	500	1500	2
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50					50
Kohlenwasserstoffe C10-C40	mg/kg	<50	100	300	500	1000	50
Naphthalin	mg/kg	<0,05		0,5	1		0,05
Acenaphthylen	mg/kg	<0,05					0,05
Acenaphthen	mg/kg	<0,05					0,05
Fluoren	mg/kg	<0,05					0,05
Phenanthren	mg/kg	<0,05					0,05
Anthracen	mg/kg	<0,05					0,05
Fluoranthen	mg/kg	0,24					0,05
Pyren	mg/kg	0,22					0,05
Benzo(a)anthracen	mg/kg	0,13					0,05
Chrysen	mg/kg	0,12					0,05
Benzo(b)fluoranthen	mg/kg	0,18					0,05
Benzo(k)fluoranthen	mg/kg	0,09					0,05
Benzo(a)pyren	mg/kg	0,18		0,5	1		0,05
Dibenz(ah)anthracen	mg/kg	<0,05					0,05
Benzo(ghi)perylen	mg/kg	0,11					0,05
Indeno(1,2,3-cd)pyren	mg/kg	0,14					0,05
PAK-Summe (nach EPA)	mg/kg	1,41 ×)	1	5	15	20	

Seite 1 von 4

GROLAB **GROUP**

Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum

06.07.2021

Kundennr.

27018091

PRÜFBERICHT 3167249 - 801560

Kunden-Probenbezeichnung

gekennzeichnet.

dem Symbol

Ausschließlich nicht akkreditierte Verfahren sind mit

MP1 RKS 1+2 (0,4-0,9 m)

LAGA II LAGA II LAGA II I AGA II

	11.						<i>γ</i>	
1.2-2/-3	, '97	1.2-2/-3,	'97 ⁻	1.2-2/-3	'97	1.2-2	2/-3,	

	Einheit	Ergebnis	Z 0	Z 1.1	Z 1.2	'97 Z2	BestGr.
Dichlormethan	mg/kg	<0,2					0,2
cis-1,2-Dichlorethen	mg/kg	<0,1					0,1
trans-1,2-Dichlorethen	mg/kg	<0,1					0,1
Trichlormethan	mg/kg	<0,1					0,1
1,1,1-Trichlorethan	mg/kg	<0,1					0,1
Trichlorethen	mg/kg	<0,1					0,1
Tetrachlormethan	mg/kg	<0,1					0,1
Tetrachlorethen	mg/kg	<0,1					0,1
LHKW - Summe	mg/kg	n.b.	<1	1	3	5	
Benzol	mg/kg	<0,05					0,05
Toluol	mg/kg	<0,05					0,05
Ethylbenzol	mg/kg	<0,05					0,05
m,p-Xylol	mg/kg	<0,05					0,05
o-Xylol	mg/kg	<0,05					0,05
Cumol	mg/kg	<0,1					0,1
Styrol	mg/kg	<0,1					0,1
Summe BTX	mg/kg	n.b.	<1	1	3	5	
PCB (28)	mg/kg	<0,01					0,01
PCB (52)	mg/kg	<0,01					0,01
PCB (101)	mg/kg	<0,01					0,01
PCB (118)	mg/kg	<0,01					0,01
PCB (138)	mg/kg	<0,01					0,01
PCB (153)	mg/kg	<0,01					0,01
PCB (180)	mg/kg	<0,01					0,01

Fluat

PCB-Summe (6 Kongenere)

PCB (101) PCB (118) PCB (138) PCB (153) PCB (180) **PCB-Summe**

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

,	Liual							
1	Eluaterstellung							
2	pH-Wert		8,8	6,5-9	6,5-9	6-12	5,5-12	0
-	elektrische Leitfähigkeit	μS/cm	93	500	500	1000	1500	10
_	Chlorid (CI)	mg/l	<2,0	10	10	20	30	2
2	Sulfat (SO4)	mg/l	16	50	50	100	150	2
3	Phenolindex	mg/l	<0,01	<0,01	0,01	0,05	0,1	0,01
5	Cyanide ges.	mg/l	<0,005	<0,01	0,01	0,05	0,1	0,005
2))	Arsen (As)	mg/l	<0,005	0,01	0,01	0,04	0,06	0,005
5	Blei (Pb)	mg/l	<0,005	0,02	0,04	0,1	0,2	0,005
5	Cadmium (Cd)	mg/l	<0,0005	0,002	0,002	0,005	0,01	0,0005
5	Chrom (Cr)	mg/l	<0,005	0,015	0,03	0,075	0,15	0,005
5	Kupfer (Cu)	mg/l	<0,005	0,05	0,05	0,15	0,3	0,005
	Nickel (Ni)	mg/l	<0,005	0,04	0,05	0,15	0,2	0,005
3	Quecksilber (Hg)	mg/l	<0,0002	0,0002	0,0002	0,001	0,002	0,0002
5	Thallium (TI)	mg/l	<0,0005	<0,001	0,001	0,003	0,005	0,0005
5	Zink (Zn)	mg/l	<0,05	0,1	0,1	0,3	0,6	0,05

n.b.

n.b.

0,02

0,1

0,5

mg/kg

mg/kg

Seite 2 von 4 ((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801560

Kunden-Probenbezeichnung

gekennzeichnet

dem

MP1 RKS 1+2 (0,4-0,9 m)

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 01.07.2021 Ende der Prüfungen: 06.07.2021

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Manfred Kanzler, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2018 an vereinfachte Ergebnisberichte und ist ohne Unterschrift

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

> **Datum** 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801560

MP1 RKS 1+2 (0,4-0,9 m) Kunden-Probenbezeichnung

Methodenliste

Feststoff

gekennzeichnet

Symbol

dem

akkreditierte Verfahren sind

nicht

Ausschließlich

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Berechnung aus Messwerten der Einzelparameter ; PAK-Summe (nach EPA) LHKW - Summe Summe BTX PCB-Summe

PCB-Summe (6 Kongenere)

DIN EN ISO 12846 : 2012-08 : Quecksilber (Hg)

DIN EN ISO 17294-2: 2017-01: Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Thallium (Tl) Zink (Zn)

DIN EN ISO 17380 : 2013-10 : Cyanide ges.

DIN EN ISO 22155: 2016-07: Dichlormethan cis-1,2-Dichlorethen trans-1,2-Dichlorethen Trichlormethan 1,1,1-Trichlorethan Trichlorethan Trichlor

Tetrachlormethan Tetrachlorethen Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol

DIN EN 13657: 2003-01: Königswasseraufschluß

DIN EN 14039: 2005-01 + LAGA KW/04: 2019-09 : Kohlenwasserstoffe C10-C22 (GC) Kohlenwasserstoffe C10-C40

DIN EN 14346: 2007-03, Verfahren A: Trockensubstanz

DIN ISO 10390: 2005-12: pH-Wert (CaCl2)

DIN 19747: 2009-07: Analyse in der Gesamtfraktion

DIN 38414-17: 2017-01: EOX

DIN EN 15308: 2016-12: PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180)

DIN 38414-23: 2002-02: Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo(a)anthracen

Chrysen Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Dibenz(ah)anthracen Benzo(ghi)perylen

Indeno(1,2,3-cd)pyren

Eluat

DIN EN ISO 12846 : 2012-08 : Quecksilber (Hg) DIN EN ISO 14402: 1999-12: Phenolindex **DIN EN ISO 14403-2 : 2012-10 :** Cyanide ges.

DIN EN ISO 17294-2: 2017-01: Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Thallium (Tl) Zink (Zn)

DIN EN 27888: 1993-11: elektrische Leitfähigkeit DIN ISO 15923-1: 2014-07: Chlorid (CI) Sulfat (SO4)

Geschäftsführer

Dr. Carlo C. Peich Dr. Paul Wimmer

DIN 38404-5: 2009-07: pH-Wert **DIN 38414-4: 1984-10:** Eluaterstellung

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801561

Auftrag 3167249 221130 Neubau BRK Kitzingen Analysennr. 801561 Mineralisch/Anorganisches Material

Probeneingang 01.07.2021 Probenahme 29.06.2021

Probenehmer Auftraggeber (Herr Makboul)
Kunden-Probenbezeichnung MP 2 RKS 1-4 (0,5-5,0 m)

LAGA II. LAGA II. LAGA II. LAGA II. 1.2-2/-3, '97 1.2-2/-3, '97 1.2-2/-3, 2 Z 0 Z 1.1 Z 1.2 '97 Z 2

Einheit Ergebnis Z 0 Z 1.1 Z 1.2 '97 Z 2 Best.-Gr.

Feststoff

Verfahren sind mit dem Symbol " *) " gekennzeichnet.

akkreditierte

diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht

Analyse in der Fraktion < 2mm							
Trockensubstanz	%	° 83,9					0,1
pH-Wert (CaCl2)		7,7	5,5-8	5,5-8	5-9		0
Cyanide ges.	mg/kg	<0,3	11	10	30	100	0,3
EOX	mg/kg	<1,0	1	3	10	15	1
Königswasseraufschluß							
Arsen (As)	mg/kg	5,2	20	30	50	150	0,8
Blei (Pb)	mg/kg	8	100	200	300	1000	2
Cadmium (Cd)	mg/kg	<0,2	0,6	1	3	10	0,2
Chrom (Cr)	mg/kg	13	50	100	200	600	1
Kupfer (Cu)	mg/kg	9	40	100	200	600	1
Nickel (Ni)	mg/kg	12	40	100	200	600	1
Quecksilber (Hg)	mg/kg	0,07	0,3	1	3	10	0,05
Thallium (TI)	mg/kg	0,1	0,5	1	3	10	0,1
Zink (Zn)	mg/kg	22	120	300	500	1500	2
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50					50
Kohlenwasserstoffe C10-C40	mg/kg	<50	100	300	500	1000	50
Naphthalin	mg/kg	<0,05		0,5	1		0,05
Acenaphthylen	mg/kg	<0,05					0,05
Acenaphthen	mg/kg	<0,05					0,05
Fluoren	mg/kg	<0,05					0,05
Phenanthren	mg/kg	<0,05					0,05
Anthracen	mg/kg	<0,05					0,05
Fluoranthen	mg/kg	<0,05					0,05
Pyren	mg/kg	<0,05					0,05
Benzo(a)anthracen	mg/kg	<0,05					0,05
Chrysen	mg/kg	<0,05					0,05
Benzo(b)fluoranthen	mg/kg	<0,05					0,05
Benzo(k)fluoranthen	mg/kg	<0,05					0,05
Benzo(a)pyren	mg/kg	<0,05		0,5	1		0,05
Dibenz(ah)anthracen	mg/kg	<0,05					0,05
Benzo(ghi)perylen	mg/kg	<0,05					0,05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05					0,05
PAK-Summe (nach EPA)	mg/kg	n.b.	1	5	15	20	

Seite 1 von 4

.⊑

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Kunden-Probenbezeichnung	MP 2	RKS 1-4 (0,5-5,0	•				
			LAGA II.	LAGA II.			
	Einheit	ا Ergebnis	Z 0	1.2-2/-3, '97 ⁻ Z 1.1	Z 1.2	1.2-2/-3, '97 Z 2	BestGr.
Dichlormethan	mg/kg	<0,2					0,2
cis-1,2-Dichlorethen	mg/kg	<0,1					0,1
trans-1,2-Dichlorethen	mg/kg	<0,1					0,1
Trichlormethan	mg/kg	<0,1					0,1
1,1,1-Trichlorethan	mg/kg	<0,1					0,1
Trichlorethen	mg/kg	<0,1					0,1
Tetrachlormethan Tetrachlorethen	mg/kg	<0,1 <0,1					0,1
LHKW - Summe	mg/kg mg/kg	<0,1 n.b.	<1	1	3	5	0,1
Benzol	mg/kg	<0,05				3	0,05
Toluol	mg/kg	<0,05					0,05
Ethylbenzol	mg/kg	<0,05					0,05
m,p-Xylol	mg/kg	<0,05					0,05
o-Xylol	mg/kg	<0,05					0,05
Cumol	mg/kg	<0,1					0,1
Styrol	mg/kg	<0,1		4		-	0,1
Summe BTX	mg/kg	n.b.	<1	1	3	5	0.01
PCB (28) PCB (52)	mg/kg mg/kg	<0,01 <0,01					0,01
PCB (101)	mg/kg	<0,01					0,01
PCB (118)	mg/kg	<0,01					0,01
PCB (138)	mg/kg	<0,01					0,01
PCB (153)	mg/kg	<0,01					0,01
PCB (180)	mg/kg	<0,01					0,01
PCB-Summe	mg/kg	n.b.					
PCB-Summe (6 Kongenere)	mg/kg	n.b.	0,02	0,1	0,5	1	
Eluat						ı	
Eluaterstellung							_
pH-Wert	0/	8,7	6,5-9	6,5-9	6-12	5,5-12	0
elektrische Leitfähigkeit	μS/cm	68	500	500	1000	1500	10
Chlorid (CI) Sulfat (SO4)	mg/l mg/l	<2,0 7,7	10 50	10 50	20 100	30 150	2 2
Phenolindex	mg/l	<0,01	<0,01	0,01	0,05	0,1	0,01
Cyanide ges.	mg/l	<0,005	<0,01	0,01	0,05	0,1	0,005
Arsen (As)	mg/l	<0,005	0,01	0,01	0,04	0,06	0,005
Blei (Pb)	mg/l	<0,005	0,02	0,04	0,1	0,2	0,005
Cadmium (Cd)	mg/l	<0,0005	0,002	0,002	0,005	0,01	0,0005
Chrom (Cr)	mg/l	<0,005	0,015	0,03	0,075	0,15	0,005
Kupfer (Cu)	mg/l	<0,005	0,05	0,05	0,15	0,3	0,005
Nickel (Ni)	mg/l	<0,005	0,04	0,05	0,15	0,2	0,005
Quecksilber (Hg) Thallium (TI)	mg/l	<0,0002 <0,0005	0,0002	0,0002	0,001	0,002	0,0002
Thailium (TI)	mg/l mg/l	<0,0005 <0,05	<0,001 0,1	0,001 0,1	0,003	0,005 0,6	0,0005 0,05

Eluat

Eluat							
Eluaterstellung							
pH-Wert		8,7	6,5-9	6,5-9	6-12	5,5-12	0
elektrische Leitfähigkeit	μS/cm	68	500	500	1000	1500	10
Chlorid (CI)	mg/l	<2,0	10	10	20	30	2
Sulfat (SO4)	mg/l	7,7	50	50	100	150	2
Phenolindex	mg/l	<0,01	<0,01	0,01	0,05	0,1	0,01
Cyanide ges.	mg/l	<0,005	<0,01	0,01	0,05	0,1	0,005
Arsen (As)	mg/l	<0,005	0,01	0,01	0,04	0,06	0,005
Blei (Pb)	mg/l	<0,005	0,02	0,04	0,1	0,2	0,005
Cadmium (Cd)	mg/l	<0,0005	0,002	0,002	0,005	0,01	0,0005
Chrom (Cr)	mg/l	<0,005	0,015	0,03	0,075	0,15	0,005
Kupfer (Cu)	mg/l	<0,005	0,05	0,05	0,15	0,3	0,005
Nickel (Ni)	mg/l	<0,005	0,04	0,05	0,15	0,2	0,005
Quecksilber (Hg)	mg/l	<0,0002	0,0002	0,0002	0,001	0,002	0,0002
Thallium (TI)	mg/l	<0,0005	<0,001	0,001	0,003	0,005	0,0005
Zink (Zn)	mg/l	<0,05	0,1	0,1	0,3	0,6	0,05

Seite 2 von 4 ((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

AGROLAB GROUP
Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801561

`Kunden-Probenbezeichnung

MP 2 RKS 1-4 (0,5-5,0 m)

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 01.07.2021 Ende der Prüfungen: 06.07.2021

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Manfred Kanzler, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2018 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

gekennzeichnet

Symbol

dem (

Ξ

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801561

* Kunden-Probenbezeichnung MP 2 RKS 1-4 (0,5-5,0 m)

Methodenliste

Feststoff

gekennzeichnet

Symbol

dem

akkreditierte Verfahren sind

nicht

Ausschließlich

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Berechnung aus Messwerten der Einzelparameter : PAK-Summe (nach EPA) LHKW - Summe Summe BTX PCB-Summe

PCB-Summe (6 Kongenere)

DIN EN ISO 12846 : 2012-08 : Quecksilber (Hg)

DIN EN ISO 17294-2: 2017-01: Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Thallium (Tl) Zink (Zn)

DIN EN ISO 17380 : 2013-10 : Cyanide ges.

DIN EN ISO 22155: 2016-07: Dichlormethan cis-1,2-Dichlorethen trans-1,2-Dichlorethen Trichlormethan 1,1,1-Trichlorethan Trichlorethen Trichlorethen Trichlorethan Trichlor

Tetrachlormethan Tetrachlorethen Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol

DIN EN 13657 : 2003-01 : Königswasseraufschluß

DIN EN 14039: 2005-01 + LAGA KW/04: 2019-09 : Kohlenwasserstoffe C10-C22 (GC) Kohlenwasserstoffe C10-C40

DIN EN 14346: 2007-03, Verfahren A: Trockensubstanz

DIN ISO 10390 : 2005-12 : pH-Wert (CaCl2)

DIN 19747 : 2009-07 : Analyse in der Fraktion < 2mm

DIN 38414-17: 2017-01: EOX

DIN EN 15308: 2016-12: PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180)

DIN 38414-23: 2002-02: Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo(a)anthracen

Chrysen Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Dibenz(ah)anthracen Benzo(ghi)perylen

Indeno(1,2,3-cd)pyren

Eluat

DIN EN ISO 12846 : 2012-08 : Quecksilber (Hg) **DIN EN ISO 14402 : 1999-12 :** Phenolindex **DIN EN ISO 14403-2 : 2012-10 :** Cyanide ges.

DIN EN ISO 17294-2: 2017-01: Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Thallium (Tl) Zink (Zn)

DIN EN 27888 : 1993-11 : elektrische Leitfähigkeit **DIN ISO 15923-1 : 2014-07 :** Chlorid (CI) Sulfat (SO4)

DIN 38404-5 : 2009-07 : pH-Wert **DIN 38414-4 : 1984-10 :** Eluaterstellung

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801562

Auftrag 3167249 221130 Neubau BRK Kitzingen 801562 Mineralisch/Anorganisches Material

Probeneingang 01.07.2021 Probenahme 29.06.2021

Probenehmer Auftraggeber (Herr Makboul)
Kunden-Probenbezeichnung MP 3 RKS 5-10 (0,4-4,4 m)

LAGA II. LAGA II. LAGA II. LAGA II. 1.2-2/-3, '97 1.2-2/-3, '97 1.2-2/-3, Z 0 Z 1.1 Z 1.2 '97 Z 2

Einheit Ergebnis Z 0 Z 1.1 Z 1.2 '97 Z 2 Best.-Gr.

Feststoff

Verfahren sind mit dem Symbol " *) " gekennzeichnet.

akkreditierte

in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht

Analyse in der Fraktion < 2mm							
Trockensubstanz	%	° 86,4					0,1
pH-Wert (CaCl2)		7,1	5,5-8	5,5-8	5-9		0
Cyanide ges.	mg/kg	<0,3	1	10	30	100	0,3
EOX	mg/kg	<1,0	1	3	10	15	1
Königswasseraufschluß							
2 Arsen (As)	mg/kg	3,9	20	30	50	150	0,8
Blei (Pb)	mg/kg	7	100	200	300	1000	2
Cadmium (Cd)	mg/kg	<0,2	0,6	1	3	10	0,2
Chrom (Cr)	mg/kg	10	50	100	200	600	1
Kupfer (Cu)	mg/kg	6	40	100	200	600	1
Nickel (Ni)	mg/kg	9	40	100	200	600	1
Quecksilber (Hg)	mg/kg	<0,05	0,3	1	3	10	0,05
Thallium (TI)	mg/kg	<0,1	0,5	1	3	10	0,1
Zink (Zn)	mg/kg	15	120	300	500	1500	2
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50					50
Kohlenwasserstoffe C10-C40	mg/kg	<50	100	300	500	1000	50
Naphthalin	mg/kg	<0,05		0,5	1		0,05
Acenaphthylen	mg/kg	<0,05					0,05
Acenaphthen	mg/kg	<0,05					0,05
Fluoren	mg/kg	<0,05					0,05
Phenanthren	mg/kg	<0,05					0,05
Anthracen	mg/kg	<0,05					0,05
Fluoranthen	mg/kg	<0,05					0,05
Pyren	mg/kg	<0,05					0,05
Benzo(a)anthracen	mg/kg	<0,05					0,05
Chrysen	mg/kg	<0,05					0,05
Benzo(b)fluoranthen	mg/kg	<0,05					0,05
Benzo(k)fluoranthen	mg/kg	<0,05					0,05
Benzo(a)pyren	mg/kg	<0,05		0,5	1		0,05
Dibenz(ah)anthracen	mg/kg	<0,05					0,05
Benzo(ghi)perylen	mg/kg	<0,05					0,05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05					0,05
PAK-Summe (nach EPA)	mg/kg	n.b.	1	5	15	20	

Seite 1 von 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

	LAGA	II.	LAGA	II.	LAGA	II.	LAG	iA II	١.
	1.2-2/-3,	'97 1	.2-2/-3,	'97 1	.2-2/-3,	'97	1.2-2	2/-3,	
Ergebnis	Z 0		Z 1.1	1	Z 1.:	2	'97	Z 2	

Kunden-Probenbezeichnung	MP 3	RKS 5-10 (0,4-4	,4 m)				
			LAGA II.	LAGA II. 1.2-2/-3, '97			
	Einheit	Ergebnis	Z 0	Z 1.1	Z 1.2	1.2-2/-3, '97 Z 2	BestGr.
Dichlormethan	mg/kg	<0,2					0,2
cis-1,2-Dichlorethen	mg/kg	<0,1					0,1
trans-1,2-Dichlorethen	mg/kg	<0,1					0,1
Trichlormethan	mg/kg	<0,1					0,1
1,1,1-Trichlorethan	mg/kg	<0,1					0,1
Trichlorethen Tetrachlormethan	mg/kg mg/kg	<0,1 <0,1					0,1
Tetrachlorethen	mg/kg	<0,1 <0,1					0,1
LHKW - Summe	mg/kg	n.b.	<1	1	3	5	0,1
Benzol	mg/kg	<0,05					0,05
Toluol	mg/kg	<0,05					0,05
Ethylbenzol	mg/kg	<0,05					0,05
m,p-Xylol	mg/kg	<0,05					0,05
o-Xylol	mg/kg	<0,05					0,05
Cumol	mg/kg	<0,1					0,1
Styrol Summe BTX	mg/kg mg/kg	<0,1 n.b.	<1	1	3	5	0,1
PCB (28)	mg/kg	<0,01	<u> </u>	I	<u> </u>	5	0,01
PCB (52)	mg/kg	<0,01					0,01
PCB (101)	mg/kg	<0,01					0,01
PCB (118)	mg/kg	<0,01					0,01
PCB (138)	mg/kg	<0,01					0,01
PCB (153)	mg/kg	<0,01					0,01
PCB (180)	mg/kg	<0,01					0,01
PCB-Summe	mg/kg	n.b.					
PCB-Summe (6 Kongenere)	mg/kg	n.b.	0,02	0,1	0,5	1	
Eluat						ı	
Eluaterstellung							_
pH-Wert	0/	8,8	6,5-9	6,5-9	6-12	5,5-12	0
elektrische Leitfähigkeit	μS/cm	75	500	500	1000	1500	10
Chlorid (CI) Sulfat (SO4)	mg/l mg/l	<2,0 10	10 50	10 50	20 100	30 150	2
Phenolindex	mg/l	<0,01	<0,01	0,01	0,05	0,1	0,01
Cyanide ges.	mg/l	<0,005	<0,01	0,01	0,05	0,1	0,005
Arsen (As)	mg/l	<0,005	0,01	0,01	0,04	0,06	0,005
Blei (Pb)	mg/l	<0,005	0,02	0,04	0,1	0,2	0,005
Cadmium (Cd)	mg/l	<0,0005	0,002	0,002	0,005	0,01	0,0005
Chrom (Cr)	mg/l	<0,005	0,015	0,03	0,075	0,15	0,005
Kupfer (Cu)	mg/l	<0,005	0,05	0,05	0,15	0,3	0,005
Nickel (Ni) Quecksilber (Hg)	mg/l	<0,005	0,04	0,05	0,15	0,2	0,005
Thallium (TI)	mg/l mg/l	<0,0002 <0,0005	<0,0002	0,0002	0,001 0,003	0,002	0,0002
Zink (Zn)	mg/l	<0,005	0,1	0,001	0,003	0,66	0,000

Εl	uat
----	-----

ڔ	⊑iuai							
=	Eluaterstellung							
2	pH-Wert		8,8	6,5-9	6,5-9	6-12	5,5-12	0
2	elektrische Leitfähigkeit	μS/cm	75	500	500	1000	1500	10
2	Chlorid (Cl)	mg/l	<2,0	10	10	20	30	2
2	Sulfat (SO4)	mg/l	10	50	50	100	150	2
2	Phenolindex	mg/l	<0,01	<0,01	0,01	0,05	0,1	0,01
<u></u>	Cyanide ges.	mg/l	<0,005	<0,01	0,01	0,05	0,1	0,005
رر ⊇	Arsen (As)	mg/l	<0,005	0,01	0,01	0,04	0,06	0,005
5	Blei (Pb)	mg/l	<0,005	0,02	0,04	0,1	0,2	0,005
Ď	Cadmium (Cd)	mg/l	<0,0005	0,002	0,002	0,005	0,01	0,0005
5	Chrom (Cr)	mg/l	<0,005	0,015	0,03	0,075	0,15	0,005
5	Kupfer (Cu)	mg/l	<0,005	0,05	0,05	0,15	0,3	0,005
=	Nickel (Ni)	mg/l	<0,005	0,04	0,05	0,15	0,2	0,005
ב	Quecksilber (Hg)	mg/l	<0,0002	0,0002	0,0002	0,001	0,002	0,0002
5	Thallium (TI)	mg/l	<0,0005	<0,001	0,001	0,003	0,005	0,0005
Ē	Zink (Zn)	mg/l	<0,05	0,1	0,1	0,3	0,6	0,05

Seite 2 von 4 ((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801562

`Kunden-Probenbezeichnung

gekennzeichnet

Symbol

dem (

Ξ

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind I

MP 3 RKS 5-10 (0,4-4,4 m)

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 01.07.2021 Ende der Prüfungen: 06.07.2021

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Manfred Kanzler, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2018 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

> **Datum** 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801562

MP 3 RKS 5-10 (0,4-4,4 m) Kunden-Probenbezeichnung

Methodenliste

Feststoff

gekennzeichnet

Symbol

dem

akkreditierte Verfahren sind

nicht

Ausschließlich

Berechnung aus Messwerten der Einzelparameter ; PAK-Summe (nach EPA) LHKW - Summe Summe BTX PCB-Summe

PCB-Summe (6 Kongenere)

DIN EN ISO 12846 : 2012-08 : Quecksilber (Hg)

DIN EN ISO 17294-2: 2017-01: Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Thallium (Tl) Zink (Zn)

DIN EN ISO 17380 : 2013-10 : Cyanide ges.

DIN EN ISO 22155: 2016-07: Dichlormethan cis-1,2-Dichlorethen trans-1,2-Dichlorethen Trichlormethan 1,1,1-Trichlorethan Trichlorethan Trichlor

Tetrachlormethan Tetrachlorethen Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol

DIN EN 13657: 2003-01: Königswasseraufschluß

DIN EN 14039: 2005-01 + LAGA KW/04: 2019-09 : Kohlenwasserstoffe C10-C22 (GC) Kohlenwasserstoffe C10-C40

DIN EN 14346: 2007-03, Verfahren A: Trockensubstanz

DIN ISO 10390: 2005-12: pH-Wert (CaCl2)

DIN 19747 : 2009-07 : Analyse in der Fraktion < 2mm

DIN 38414-17: 2017-01: EOX

DIN EN 15308: 2016-12: PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180)

DIN 38414-23: 2002-02: Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo(a)anthracen

Chrysen Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Dibenz(ah)anthracen Benzo(ghi)perylen

Indeno(1,2,3-cd)pyren

Eluat

DIN EN ISO 12846 : 2012-08 : Quecksilber (Hg) DIN EN ISO 14402: 1999-12: Phenolindex **DIN EN ISO 14403-2 : 2012-10 :** Cyanide ges.

DIN EN ISO 17294-2: 2017-01: Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Thallium (Tl) Zink (Zn)

DIN EN 27888: 1993-11: elektrische Leitfähigkeit DIN ISO 15923-1: 2014-07: Chlorid (CI) Sulfat (SO4)

DIN 38404-5: 2009-07: pH-Wert **DIN 38414-4: 1984-10:** Eluaterstellung

Geschäftsführer Dr. Carlo C. Peich Dr. Paul Wimmer

Seite 4 von 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801563

Auftrag 3167249 221130 Neubau BRK Kitzingen 801563 Mineralisch/Anorganisches Material

Probeneingang 01.07.2021 Probenahme 29.06.2021

Probenehmer Auftraggeber (Herr Makboul)
Kunden-Probenbezeichnung MP 4 RKS 2+4+5 (3,3-5,0 m)

LAGA II. LAGA II. LAGA II. LAGA II. 1.2-2/-3, '97 1.2-2/-3, '97 1.2-2/-3, Z 0 Z 1.1 Z 1.2 '97 Z 2

Einheit Ergebnis Z 0 Z 1.1 Z 1.2 '97 Z 2 Best.-Gr.

Feststoff

Verfahren sind mit dem Symbol " *) " gekennzeichnet.

akkreditierte

in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht

Analyse in der Fraktion < 2mm							
Trockensubstanz	%	° 85,9					0,1
pH-Wert (CaCl2)		8,0	5,5-8	5,5-8	5-9		0
Cyanide ges.	mg/kg	<0,3	1	10	30	100	0,3
EOX	mg/kg	<1,0	1	3	10	15	1
Königswasseraufschluß							
Arsen (As)	mg/kg	8,6	20	30	50	150	0,8
Blei (Pb)	mg/kg	6	100	200	300	1000	2
Cadmium (Cd)	mg/kg	<0,2	0,6	1	3	10	0,2
Chrom (Cr)	mg/kg	70	50	100	200	600	1
Kupfer (Cu)	mg/kg	48	40	100	200	600	1
Nickel (Ni)	mg/kg	82	40	100	200	600	1
Quecksilber (Hg)	mg/kg	0,06	0,3	1	3	10	0,05
Thallium (TI)	mg/kg	0,1	0,5	1	3	10	0,1
Zink (Zn)	mg/kg	55	120	300	500	1500	2
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50					50
Kohlenwasserstoffe C10-C40	mg/kg	<50	100	300	500	1000	50
Naphthalin	mg/kg	<0,05		0,5	1		0,05
Acenaphthylen	mg/kg	<0,05					0,05
Acenaphthen	mg/kg	<0,05					0,05
Fluoren	mg/kg	<0,05					0,05
Phenanthren	mg/kg	<0,05					0,05
Anthracen	mg/kg	<0,05					0,05
Fluoranthen	mg/kg	<0,05					0,05
Pyren	mg/kg	<0,05					0,05
Benzo(a)anthracen	mg/kg	<0,05					0,05
Chrysen	mg/kg	<0,05					0,05
Benzo(b)fluoranthen	mg/kg	<0,05					0,05
Benzo(k)fluoranthen	mg/kg	<0,05					0,05
Benzo(a)pyren	mg/kg	<0,05		0,5	1		0,05
Dibenz(ah)anthracen	mg/kg	<0,05					0,05
Benzo(ghi)perylen	mg/kg	<0,05					0,05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05					0,05
PAK-Summe (nach EPA)	mg/kg	n.b.	1	5	15	20	

Seite 1 von 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

	LAGA	II.	LAGA	II.	LAGA	II.	LAG	iΑII	
	1.2-2/-3	, '97	1.2-2/-3	, '97	1.2-2/-3	'97	1.2-	2/-3,	
Ergebnis	Z 0		Z 1.	1	Z 1.	2	'97	Z 2	

Kunden-Probenbezeichnung	MP 4	RKS 2+4+5 (3,3-	-5,0 m)				
				LAGA II.			
	Einheit	1 Ergebnis	.2-2/-3, '97 Z 0	1.2-2/-3, '97 Z 1.1	1.2-2/-3, '97 Z 1.2	1.2-2/-3, '97 Z 2	BestGr.
Dichlormethan	mg/kg	<0,2					0,2
cis-1,2-Dichlorethen	mg/kg	<0,1					0,1
trans-1,2-Dichlorethen	mg/kg	<0,1					0,1
Trichlormethan	mg/kg	<0,1					0,1
1,1,1-Trichlorethan	mg/kg	<0,1					0,1
Trichlorethen	mg/kg	<0,1					0,1
Tetrachlormethan	mg/kg	<0,1					0,1
Tetrachlorethen	mg/kg	<0,1	.4	4		_	0,1
LHKW - Summe	mg/kg	n.b.	<1	1	3	5	0.05
Benzol Toluol	mg/kg mg/kg	<0,05 <0,05					0,05
Ethylbenzol	mg/kg	<0,05					0,05
m,p-Xylol	mg/kg	<0,05					0,05
o-Xylol	mg/kg	<0,05					0,05
Cumol	mg/kg	<0,1					0,1
Styrol	mg/kg	<0,1					0,1
Summe BTX	mg/kg	n.b.	<1	1	3	5	, ,
PCB (28)	mg/kg	<0,01					0,01
PCB (52)	mg/kg	<0,01					0,01
PCB (101)	mg/kg	<0,01					0,01
PCB (118)	mg/kg	<0,01					0,01
PCB (138)	mg/kg	<0,01					0,01
PCB (153)	mg/kg	<0,01					0,01
PCB (180)	mg/kg	<0,01					0,01
PCB-Summe	mg/kg	n.b.					
PCB-Summe (6 Kongenere)	mg/kg	n.b.	0,02	0,1	0,5	1	
Eluat							
Eluaterstellung							
pH-Wert		9,0	6,5-9	6,5-9	6-12	5,5-12	0
elektrische Leitfähigkeit	μS/cm	132	500	500	1000	1500	10
Chlorid (Cl)	mg/l	12	10	10	20	30	2
Sulfat (SO4)	mg/l	31	50	50	100	150	2
Phenolindex	mg/l	<0,01	<0,01	0,01	0,05	0,1	0,01
Cyanide ges.	mg/l	<0,005	<0,01	0,01	0,05	0,1	0,005
Arsen (As) Blei (Pb)	mg/l	<0,005 <0,005	0,01	0,01	0,04	0,06	0,005
Cadmium (Cd)	mg/l mg/l	<0,005	0,02 0,002	0,04 0,002	0,1 0,005	0,2 0,01	0,005
Chrom (Cr)	mg/l	<0,005	0,002	0,002	0,005	0,01	0,005
Kupfer (Cu)	mg/l	<0,005	0,05	0,05	0,15	0,13	0,005
Nickel (Ni)	mg/l	<0,005	0,04	0,05	0,15	0,2	0,005
Quecksilber (Hg)	mg/l	<0,0002	0,0002	0,0002	0,001	0,002	0,0002
Thallium (TI)	mg/l	<0,0005	<0,001	0,001	0,003	0,005	0,0005
Zink (Zn)	mg/l	<0,05	0,1	0,1	0,3	0,6	0,05

Eluat

Eluat							
Eluaterstellung							
pH-Wert		9,0	6,5-9	6,5-9	6-12	5,5-12	0
elektrische Leitfähigkeit	μS/cm	132	500	500	1000	1500	10
Chlorid (CI)	mg/l	12	10	10	20	30	2
Sulfat (SO4)	mg/l	31	50	50	100	150	2
Phenolindex	mg/l	<0,01	<0,01	0,01	0,05	0,1	0,01
Cyanide ges.	mg/l	<0,005	<0,01	0,01	0,05	0,1	0,005
Arsen (As)	mg/l	<0,005	0,01	0,01	0,04	0,06	0,005
Blei (Pb)	mg/l	<0,005	0,02	0,04	0,1	0,2	0,005
Cadmium (Cd)	mg/l	<0,0005	0,002	0,002	0,005	0,01	0,0005
Chrom (Cr)	mg/l	<0,005	0,015	0,03	0,075	0,15	0,005
Kupfer (Cu)	mg/l	<0,005	0,05	0,05	0,15	0,3	0,005
Nickel (Ni)	mg/l	<0,005	0,04	0,05	0,15	0,2	0,005
Quecksilber (Hg)	mg/l	<0,0002	0,0002	0,0002	0,001	0,002	0,0002
Thallium (TI)	mg/l	<0,0005	<0,001	0,001	0,003	0,005	0,0005
Zink (Zn)	mg/l	<0,05	0,1	0,1	0,3	0,6	0,05

Seite 2 von 4 ((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

GROLAB **GROUP** Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

> **Datum** 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801563

Kunden-Probenbezeichnung

gekennzeichnet

Symbol

dem (

Ξ

MP 4 RKS 2+4+5 (3,3-5,0 m)

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 01.07.2021 Ende der Prüfungen: 06.07.2021

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISÖ/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Manfred Kanzler, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2018 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Geschäftsführer

Dr. Carlo C. Peich Dr. Paul Wimmer

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.07.2021 Kundennr. 27018091

PRÜFBERICHT 3167249 - 801563

Kunden-Probenbezeichnung MP 4 RKS 2+4+5 (3,3-5,0 m)

Methodenliste

<u>Feststoff</u>

gekennzeichnet

Symbol

dem

akkreditierte Verfahren sind

nicht

Ausschließlich

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Berechnung aus Messwerten der Einzelparameter : PAK-Summe (nach EPA) LHKW - Summe Summe BTX PCB-Summe

PCB-Summe (6 Kongenere)

DIN EN ISO 12846 : 2012-08 : Quecksilber (Hg)

DIN EN ISO 17294-2: 2017-01: Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Thallium (Tl) Zink (Zn)

DIN EN ISO 17380 : 2013-10 : Cyanide ges.

DIN EN ISO 22155: 2016-07: Dichlormethan cis-1,2-Dichlorethen trans-1,2-Dichlorethen Trichlormethan 1,1,1-Trichlorethan Trichlorethan Trichlorethen Trichlorethan Trichlor

Tetrachlormethan Tetrachlorethen Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol

DIN EN 13657 : 2003-01 : Königswasseraufschluß

DIN EN 14039: 2005-01 + LAGA KW/04: 2019-09 : Kohlenwasserstoffe C10-C22 (GC) Kohlenwasserstoffe C10-C40

DIN EN 14346: 2007-03, Verfahren A: Trockensubstanz

DIN ISO 10390 : 2005-12 : pH-Wert (CaCl2)

DIN 19747 : 2009-07 : Analyse in der Fraktion < 2mm

DIN 38414-17: 2017-01: EOX

DIN EN 15308: 2016-12: PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180)

DIN 38414-23: 2002-02: Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo(a)anthracen

Chrysen Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Dibenz(ah)anthracen Benzo(ghi)perylen

Indeno(1,2,3-cd)pyren

Eluat

DIN EN ISO 12846 : 2012-08 : Quecksilber (Hg) **DIN EN ISO 14402 : 1999-12 :** Phenolindex **DIN EN ISO 14403-2 : 2012-10 :** Cyanide ges.

DIN EN ISO 17294-2: 2017-01: Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Thallium (Tl) Zink (Zn)

DIN EN 27888 : 1993-11 : elektrische Leitfähigkeit **DIN ISO 15923-1 : 2014-07 :** Chlorid (CI) Sulfat (SO4)

DIN 38404-5 : 2009-07 : pH-Wert **DIN 38414-4 : 1984-10 :** Eluaterstellung

